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The induction coefficient of induced representation theory: its 
algebra and an analytic expression 

R W Haaset and R Dirl 
Institut fur Theoretische Physik, Technische Universitat Wien, A-1040 Karlsplatz, 13 Wien, 
Austria 

Received 25 J u l y  1985 

Abstract. The induction coefficient is defined as the element of a matrix reducing the 
induced representation into irreducible constituents. We give the algebra of these 
coefficients and a closed analytic expression in terms of matrix elements of coset representa- 
tives. The consequences of this choice are derived and the importance of some of these 
results for the Racah-Wigner coupling algebra of the symmetric and unitary groups noted. 

1. Introduction 

The method of induced representations in physical applications has been both useful 
and powerful. For finite groups the method originates from Frobenius (1898). This 
method was extended to continuous groups by Wigner (1939) in classifying the unitary 
irreps of the Poincark group. In more recent applications the induction method and 
its related concept of coset manifolds are fundamental to the Kaluza-Klein theories 
of supergravity in elementary particle physics (Salam and Strathdee 1982, van Nieuwen- 
huizen 1984) and to the definition of coherent state theory of, for example, Sp, 2 U3 
which is used to describe collective nuclear behaviour (Perelomov 1975, Monastryrskii 
and Perelomov 1975, Kramer 1982, Rowe 1984). In the field of molecular and crystal 
field theory, induced representations of the symmetric groups have been employed to 
classify the many-electron states of multi-centred systems (Chan and Newman 1984). 

The systematic analysis of the general properties of induced representations was 
performed by Mackey (1951, 1952, 1953, 1968) (see Barut and Rgczka 1977). One 
important task is to evaluate the equivalence matrix (the elements of which are called 
induction coefficients by Haase and Butler (1984a)) which reduces the induced rep- 
resentation into irreducible representations (irreps). Two main approaches have been 
given. The first is the projection operator techniques with the regular representation 
as its starting point. Sullivan (1973, 1975) has developed this analysis further by 
concentrating on the double coset matrix elements (DCME) and 'weighted' DCME and 
giving their properties with respect to induced representations. Haase and Butler 
(1984a, 1985) has given a second perhaps more direct approach defining instead certain 
transformation coefficients-induction coefficient, induction and reinduction factors- 
and developing the algebra which they satisfy. The two sets of transformation 
coefficients from these two approaches are quite different yet they perform identical 
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transformations. We reconcile the two approaches by identifying the induction 
coefficient with a weighted coset matrix element (weighted C M E ) .  The identification 
is based on the Frobenius reciprocity theorem which underlies many of the results in 
induced representation theory. 

We have organised this paper in the following way. In fi 2 we briefly give some of 
the properties of the induction coefficients, induction factors and reinduction factors 
and their interrelationships. The new results here are the factorisation of the induction 
coefficient and the expansion of the reinduction factor in terms of four induction 
factors and a second reinduction factor. An erratum is also given for Haase and Butler 
(1984a, equation ( 5 . 7 ) ) .  In 0 3 we show that the weighted C M E  choice for the induction 
coefficient fixes the entire algebra of the induced representation theory. It also’deter- 
mines the induction and reinduction factors to be equal to Sullivan’s weighted DCME 

and a resubduction factor. An application to SO( n + 1) 3 SO( n )  induced representa- 
tions is given. Throughout the paper we use the notation and terminology established 
in Haase and Butler (1984a). For all mathematical derivation we use implicitly the 
concept of a G basis for which the matrix representations of distinct equivalent 
representations are taken to be identical. That is, in any one basis we choose a 
representation and fix it once and for all. 

2. Induced representation theory 

In  this section we briefly recount definitions of three types of transformation coefficients 
describing changes of bases within induced representation spaces. The details can be 
found elsewhere (Haase and Butler 1984a). The three types of coefficients were therein 
termed induction coefficients, induction factors and reinduction factors. Later in this 
section we describe the relationship between these three. For simplicity we shall assume 
in the following that the groups are finite or compact continuous and if G 2 H then 
H is of finite index in G or G / H  is compact. 

The product space of irrep space V,, of a subgroup H = G with the left coset space 
VG/ H defines the induced representation space 

where y labels the irreps of G and a = 1,2, .  . . 17 t : y /  indexing the 17 t : y /  multiple 
occurrences of y ( G )  in q ( H ) T G .  We note for convenience that the Frobenius 
reciprocity theorem gives the result 

(2.3) 
where I y :  771 denotes the multiplicity of v ( H )  in y ( G )  under G 3 H. The reduction 
(2.2) is given by the induction coefficients. Let p denote a coset representative of G/H,  
and i and j label the bases of irrep spaces of y and r ]  respectively. Then the induction 
coeflcient ( T (  H) T a y ( G ) i  I T (  H) t GpJ) is an element of an orthonormal matrix indexed 
by sets (ayi) and ( p j ) .  In terms of matrix representations it performs the reduction 

c ( T ( H )  t a ’ ? ’ ( G ) i ’ l ~ ( H )  t G p l i ’ ) ~  T (S)”’pj(T(H) t G p j l ~ ( H )  t a y ( G ) i )  
P’l’pj 

177 t : ?I = 17: 771 

= 8“ o s y  7Y(g)”l (2.4) 
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where 77 t (g)’’”’,,, = S”., v( pi’gp)’’, with po  satisfying po’gpe  H. The inductionfactor 
is an element of the matrix transforming between representations equivalent by 
Mackay’s subgroup theorem: 

(2.5) 

where q denotes a double coset representative of H\G/K,  H, = qH9-I and L ( q )  = H, n 
K. We denote the induction factor as 

(2 .6 )  

These factors are elements of an orthonormal matrix indexed by (ayb) and (CA (L(  q ) ) d ) .  
We note that this includes all groups L(q) indexed by q. In the case K = E (the identity 
group) the induction factor reduces to an induction coefficient. 

The induction factor can also be used to factor an induction coefficient of v ( H )  t G.  
Each coset representative ~ E G / H  can be uniquely expressed as p =  r9 where 9~ 
K\G/H and r is a coset representative of K/L(q) (see Coleman 1966, Bradley and 
Cracknell 1972). By performing appropriate bases transformations we derive 

[ v ( H )  t GI .1 K -8 [ v ( H , )  .1 L(q)l  ‘T K 
4 

( v ( H )  t ay(G)b~(K)1[17(H,)ch(L(q))l t ~ K ( K ) ) .  

( d H )  t ay(G)i  I v ( H )  t Gpj) 

= C ( y ( ~ ? i l  Y ( G ) ~ K ( K ) ~ )  
bxkchld 

x (T(H)  ? a y ( G ) b ~ ( K )  \ [q(H,)cA(L(q)) l?  ~ K ( K ) )  

x(A(L(q))  t W K ) k l A ( L ( q ) ?  t KrO 

X (v(H)cA(L(q),-l)lI q(H)j ) .  (2.7) 

The fourth term is a second induction coefficient of a lower chain than G 2 H, that of 
K 2 L(q). The second and fifth terms are transformation coefficients reducing respec- 
tively the irrep spaces y(G) and q (H) according to the GH chain G 1 K and H 2 L( q) , -  L .  
Using their orthonormality property we have 

(q(H)  1 a y ( G ) b ~ ( K ) k l  T(H)  t GpcA(L(q),-l)l) 

=C (q (H)  t ar(G)b~(K)l[q(H,)cA(L(q))lt ~ K ( K ) )  
d 

x(A(L(q))  t d 4 w 4 w ( q ) )  t KrO. ( 2 . 7 ~ )  

Equation ( 2 . 7 ~ )  can be likened to Racah’s factorisation lemma for coupling coefficients 
(see Butler 1975). 

The reinduction factor, 

(A(L) t ~ K ( K )  ? dy(G)lA(L) 7 arl(H) t bA(G)) (2.8) 
is an element of an orthonormal matrix indexed by ( C K ~ )  and ( q b )  and describing 
the equivalence of the two induced representations 

(2.9) 
Occurring in (2.9) is a two-step induction process from L to G via two intermediate 
groups H and K. At each step the reduction of the induced representation space to 
irreducibles has been performed. Since the reduction involves an induction coefficient, 
a reinduction factor can be expressed in terms of four induction coefficients. Each 
element of G can be expressed as 

( A  (L) f K) t G - ( A  (L) t H) t G .  

g = P , h = p , P * l ,  and g = P3k = P3P412 (2.10) 
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where pi E G/ H, p 2  E H/ L, p 3  E G/ K, p4 E K/ L. But note that the elements 1, and 1, of 
L are not necessarily the same. However we may write 1 2 =  loll.  Thus we have the 
following 

(A(L) t C K ( K )  T dy(G)IA(L)  T a v ( H ) t  b y ( G ) )  
aVbJ 

x ( v ( H )  t b ~ ( G ) i l v ( H )  t Gpij)(A(L) T aq(H)jIA(L) t Hp20 

= C ( K ( K )  t dy(G) i Ik (K)  t Gp&)(A(L) t c ~ ( K ) k l h ( L )  t Kp4l')"1d'', 
kl '  

(2.11) 
where p l ,  p 2 ,  p 3 ,  p4 are such that l o = p 4 1 p ; 1 p i p 2 ~  L. Note the appearance of the 
matrix element A ( lo ) " l .  Unfortunately an  error appears in equations (5.6)-(5.7) of 
Haase and Butler (1984a). There lo was assumed the unit element which is not true 
in general. 

One final result is to use the factorisation of the induction coefficients, equation 
(2.7), to express the induction factor in terms of four induction factors and a second 
reinduction factor of a 'lower' group-subgroup scheme. The group relationships are 
given in figure 1. If given M c G then the coset representatives p1 E G / H  and p 3  E G / K  
can be chosen as 

PI = '141 with q1 E M\G/H (2.12) 

P3 = r3q3 with q3 E M \ G / K  (2.13) 

where rl and r3 are coset representatives of M/N(q , )  and M/R(q,) respectively. N(q , )  
and  R( q3)  are defined as the intersection groups N( q l )  = H,, n M and R( q3)  = K,, n M. 
The isomorphic groups N(ql),;1 and R(q3),;1 are subgroups of H and  K respectively. 
The coset representatives p 2  and p4 can now also be expressed in similar form 

P2 = r242 with 4 2 ~  N(qi)q;I\H/L (2.14) 

P4 = r4q4 with q4E R(q3),;l\K/L (2.15) 

where r2 and r4 are coset representatives of N(q,),;l/S(q,, q2)  and R(q,),,/S(q,, q4). 
Here S ( q l ,  q J  = L,, n N(qi),;1 and S ( q 3 ,  q4) = L,n R(q3),;l. The isomorphic groups 

S ( q ,  9 q 2 I q 1  = q , S ( q , ,  4214;' and S ( q 3 ,  q4)y; '= 93S(q3, q 4 ) q i i  
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3. An analytic choice for induction coefficients and its consequences 

Sullivan (1973, 1975) has investigated the properties of double coset matrices. In this 
section we review this work although we cast the results into a form more suited for 
our purpose. We show that a particular choice of solution for the induction coefficients 
based on the double coset matrix element ( DCME)  leads to identifications between our 
induction factor and Sullivan’s weighted DCME and between the reinduction factor 
and the resubduction factor. 

The double coset matrix is the irreducible matrix representation of the double coset 
representative q E K\G/H. An element of this matrix, the DCME, is labelled by indices 
symmetry adapted to the GH chains G 2 H 2 L(q),-l and G 2 K 3 L(q). The DCME 

has the form (cf Sullivan 1975, equation (1 .1) )  

( ~ ( G ) ~ K ( K ) ~ A  (L(q))llql~(G)a77(H)cA‘(L(q),-~)l‘) 

Y ( G 1 b K  ( K) dA ( L( 4 ) 1 I Y (G, )a? ( H, 1 ( L( 4 ) 1) 6 ‘‘A 6 ‘1, .  (3.1) 

The weighted DCME given by 

1 Y A  H K/ G L V K  I y ( G ) bK ( K 1 dA ( L ( q 1 1 I Y ( G , ) a rl( H , CA ( L ( ) )) ( 3.2 ) 

was shown to be orthonormal on the sets of indices ( a y b )  and ( c A ( L ( q ) ) d )  and 
considered to be the transformation between the representations equivalent by Mackey’s 
subgroup theorem, see (2.5). Furthermore if K =  E then q corresponds to a coset 
decomposition G/H and (3.2) reduces to the form, which we call a weighted coset 
matrix element (weighted CME),  

(3.3) 

on replacing q by p,  b by i and c by j .  These remarks are to be compared to those 
for the induction factor. We also note that the CME is labelled by index sets belonging 
to two different basis labels. However by a suitable transformation the C M E  may be 
expressed in two forms 

( Y ( G) i I PI Y (G) a 77 ( H ) j )  = c Y ( P I’d Y ( G) i’ I Y ( G a 77 ( H ) j )  
a’ 

= c (y(G)i  1 r (G)a’77’ (H>j ’>y (p )a ’~ j ’aw  (3.4) 
a’w” 

where y (  p ) ’ , .  and y (  p ) a ” j ’ a w  are the irreducible matrix elements ofthe coset representa- 
tive p in an arbitrary basis and a symmetry adapted basis respectively. The transforma- 
tion coefficient ( y ( G ) i  I y ( G ) a v ( H ) j )  reduces the irrep space of y(G) under the chain 
G 2 H .  

The comparison between the induction factor and weighted DCME brings us to 
consider the identification 

(T(H)  ? a y ( G ) i I  rl(H) ? Gpj)  = ~rH/G77~’”(r(G)ilp~r(G)a77(H)j). (3.5) 

The weighted C M E  has the same orthonormality conditions as the induction coefficient 
as can be seen from the remark following (3 .2)  with K set to E. Furthermore (3.5) 
satisfies (2.4)-that is, it performs the reduction ofthe induced representation v(H)  t G 
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(3.6) 

The first line is obtained by the group property of irrep matrices and the second by 
the orthonormality condition. 

The identification (3.5) amounts to a choice for the induction coefficient. The effect 
of this choice is to fix entirely the phase freedom (see Haase and Butler 1985) within 
the induced representation theory. This can be seen as follows. Let us restrict ourselves 
to transformations which leave the irrep matrices of y(G) and v ( H )  invariant, i.e. we 
have a set of standard matrices which we want to remain as standard. The allowed 
set of transformations determine the phase freedom of the induction coefficient and 
the C M E  (and other coefficients). This may be written 

( v ( H )  t ; y ( G ) i / v ( H )  t G p j ) = C  u ( ~ , t ,  Y ) ‘ ~ ( T ( H )  t ay(G)il T ( H )  t Gpj)  
a 

(3.7) 
a 

where U (  .I?, y) and U (  y, 7) are termed the phase freedom matrices. If the choice 
(3.5) is made and is also to remain invariant under further possible phase freedom 
choices, we must impose the restriction 

U(??,  = V(Y, (3.8) 

Note this restriction reflects the statement of the Frobenius reciprocity theorem ( 2 . 2 ) .  
It also implies that no phase freedom remains within the induced representation theory, 
i.e. for the induction factor and reinduction factor. These must be determined in some 
manner from (3.5). Indeed the expressions (2.7) and (2.11) provide us with their 
solution. Using the orthonormality of the various transformation coefficients, (2.7) is 
rearranged as 

(T(H) t ~ Y ( G ) ~ K ( K )  I [~ (Hq)ch(L(q ) ) l  t dK(”)SA’A6’’r 

=C(Y(G)~K(K)~~~(G)~)(I~(H) t ay(G)i l r l (H) t Gpj) 
ik 

x(A‘(L(q)) t Krr’IA’(L(q)) t dK(K)k)(r](H)jl 77(H)cA(L(q),-I)I) (3.9) 

= C bK (K)k  I r (G) i)(r(G) i /  pl y(G)aq (Hlj)  
i jk 

X I yHIG77 11’2(KA/ K L1’’2( K (K)dA ’( L( q))/‘lr-’ I K  (K)k) 

x (v (H) j I  T(H)cA(L(q)q-l)O (3.10) 

= ( y A  HK/GLvKI1’2(y(G)bK(K)dA’(L(q))l’lr-1p(y(G)arl(H)cA ( L ( q ) q - l ) l )  

(3.11) 

where we have used the group property. The final result is 

(77(H) t nY(G)bK(K)1[17(Hq)ch(L(q))l t dK(K)) 

= 1 H K/ G L v  r(G)  b~ ( K )  dA q 1) I r(G, ) a77 ( H,) cA ( L( q 1 )) (3.12) 
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where we have used (3 .1) .  The right-hand side is Sullivan’s weighted DCME of (3 .2) .  
The reinduction factor is evaluated to be a resubduction factor (see Haase and Butler 
1984a, equation (2.23)) 

(A(L) t CK(K) t dy(G)lA(L)t at7(H) T br(G)) 

= C I Y L/ I I Y I-’( Y ( G)  i l  p31 Y ( G )  d~ ( K )  w K ( K )  k I p41 K ( K )  CA ( L) 1’) 
ijkll’ 

x ( A  (L)l‘lL$ (L)l)(rl(H)ah(L)llp;’/7(H)j)(y(G)b.rl(H)jlp;’ly(G)i) 
(3.13) 

= C I L/ GI I A I-’( Y (G) b7 ( H) U A  ( L) 11 p 3  p 4 l 0 p ; ’ p  7’ I Y ( GI d~ ( K) CA ( L) I )  

(3.14) 

(3.15) 

To initiate this proof we have used the orthonormality of the induction coefficients to 
remove them to the RHS of (2.1 l ) ,  and later the group property of irrep matrices. The 
summation over all p ,  is restricted such that Io  = p i ’ p ; ’ p l  p z  E L. Finally the summation 
over pl and p 2  enumerates the number of cosets for G/L which is IG/LI. Note that 
both induction and subduction factors are indexed by the same labels ( w d )  and 
(qb) -aga in  a consequence of the Frobenius reciprocity theorem. 

One can also show that (3.12) and (3 .15)  satisfies identity (2.19). The proof will 
not be given here since it is tedious and lengthy, and  does not add  further to the 
discussion. 

A final consequence of the choice (3.5) is that the overlap (7 t p ’ j ‘ l q  t p j )  (also 
known as the normalisation kernel in the collective theory of nuclei) is not necessarily 
orthonormal. We have upon expanding in terms of the reduced basis 

= (r(G)brl (H)aA (L) 1 y ( G ) d K  ( K )  CA (L)). 

(7 t P’Y 7 t pj) 
= C (77 t P’A rl t a y i ) ( ~  t ayi  I rl t pi) 

a y !  

by the group matrix property. 
If p ‘ - ’ p  E H this reduces to 

(3.16) 

(3.17) 

and if p ’ - ’ p  = e the overlap becomes orthonormal 

(7 t pj’lv t PA = 6’’. (3 .18)  

As an example of the use of (3.5) we give an application to the group-subgroup 
chain SO(n + 1) = SO(n). First though we use (3.4) to rearrange (3.5) into the form 
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(3.19) 

where the C M E  is now expressed in the one GH adapted basis. The coset space 
SO(n + l ) /SO(n)  can be identified with the n-dimensional sphere S ,  embedded in 
SO( n + 1). The volume of this space is 

2s (2 7 7 ) d  
(SO(n+l ) /SO(n) l=  ( n  - l ) ( n  -3 )  . . . (3.20) 

where 6 = ( n  + 1 )  mod 2 and d is the largest integer s ; ( n  + 1). The coset representatives 
are parametrised by n variables x,  ( i  = 1 . . . n ) .  The range of the x,  is governed by 
ZY=, x t S  1. Setting xn+’ = * ( l  -Z,  x f ) ” ’ ,  the variables then obey X::: x f =  1,  i.e. the 
S,  constraint. For the fundamental representation, the coset representatives are 

(3.21) 

where x - xt and xt x are understood to be the matrix products of column matrix x 
and row matrix XI, and I ,  is the n x n unit matrix. In terms of the projective coordinate 
parameters z, = [2/(1+ X , + ’ ) ] X ,  the coset representatives are 

using x,+’ = [( 1 - z2/4)/1 + z2/4] and z2 = Z z,zi. Both D [ ’ ] ( x )  and D[’] ( z )  are symmetry 
adapted to the SO( n + 1) 2 SO( n )  chain. 

We now consider the permutation representation, i.e. the representation induced 
from the identity irrep [ O](SO( n)). This representation is an infinite-dimensional 
representation of SO(n + 1 )  which under reduction to the irreps of SO( n + 1) gives all 
the total symmetric irreps [ I ]  of SO(n+ 1 )  with multiplicity one. This follows from 
the Frobenius reciprocity theorem. Thus (3.16) reduces to 

( C O I ( S O , )  t o[lI(son+,)o[mI(so,)jl[OI(sOn) t SOn+lpo) 

= I[I] /G/H/”2D[’1(  p ) o [ m U o [ o l o  (3.23) 

where 

) ‘ I 2 .  
( n  + l - 3 ) !  ( n  - 1 ) (  n - 3) . . . I[ l ] / G /  HI = (( n + 21 - 2) 
l ! ( n - 2 ) !  26(277)d 

The CME for [ I ]  ( I >  1) can be obtained by successive couplings of D [ ’ ] ( p )  if the 
coupling coefficients are known. 

In the case n = 2 ,  i.e. S 0 ( 3 ) 2 S 0 ( 2 ) ,  the right-hand side is found to be [ (21+  
1)/ T ] ” ~ D [ ’ ~ (  p ) o r m l o o [ o l o  which is noted as being the well known spherical harmonics 
Y,,.,(ap) if the parametrisation of p is taken from the Euler angles (a, p, y )  of SO(3). 
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4. Concluding remarks 

In this paper we have given the algebra of the induced representation theory, specifically 
the identities relating the three transformation coefficients of this theory-induction 
coefficients, induction factors and reinduction factors. The weighted C M E  was found 
to satisfy the identities of the induction coefficient. The identification was shown to 
fix the induced representation algebra which we summarise below: 

induction coefficient = weight C M E  

induction factor =weight DCME 
reinduction factor = resubduction factor. 

This last result has importance for the Racah-Wigner algebra of the unitary groups. 
From the Schur-Weyl duality (see Haase and  Butler 1984b) we have the correspon- 
dences 

( i )  
(ii) U,, recoupling factor - Sfi+f2+f3 resubduction factor. 

Thus the identification of the symmetric group resubduction and  reinduction factors 
implies an  equivalence between the U,, recoupling factor and  the resubduction 
factor to within certain duality factors. 

resubduction factor - Sfl+f,+f, reinduction factor. 
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